Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils.

نویسندگان

  • Ashok K Patra
  • Luc Abbadie
  • Annie Clays-Josserand
  • Valérie Degrange
  • Susan J Grayston
  • Nadine Guillaumaud
  • Pierre Loiseau
  • Frédérique Louault
  • Shahid Mahmood
  • Sylvie Nazaret
  • Laurent Philippot
  • Franck Poly
  • James I Prosser
  • Xavier Le Roux
چکیده

Management by combined grazing and mowing events is commonly used in grasslands, which influences the activity and composition of soil bacterial communities. Whether observed effects are mediated by management-induced disturbances, or indirectly by changes in the identity of major plant species, is still unknown. To address this issue, we quantified substrate-induced respiration (SIR), and the nitrification, denitrification and free-living N(2)-fixation enzyme activities below grass tufts of three major plant species (Holcus lanatus, Arrhenatherum elatius and Dactylis glomerata) in extensively or intensively managed grasslands. The genetic structures of eubacterial, ammonia oxidizing, nitrate reducing, and free-living N(2)-fixing communities were also characterized by ribosomal intergenic spacer analysis, and denaturing gradient gel electrophoresis (DGGE) or restriction fragment length polymorphism (RFLP) targeting group-specific genes. SIR was not influenced by management and plant species, whereas denitrification enzyme activity was influenced only by plant species, and management-plant species interactions were observed for fixation and nitrification enzyme activities. Changes in nitrification enzyme activity were likely largely explained by the observed changes in ammonium concentration, whereas N availability was not a major factor explaining changes in denitrification and fixation enzyme activities. The structures of eubacterial and free-living N(2)-fixing communities were essentially controlled by management, whereas the diversity of nitrate reducers and ammonia oxidizers depended on both management and plant species. For each functional group, changes in enzyme activity were not correlated or were weakly correlated to overall changes in genetic structure, but around 60% of activity variance was correlated to changes in five RFLP or DGGE bands. Although our conclusions should be tested for other ecosystems and seasons, these results show that predicting microbial changes induced by management in grasslands requires consideration of management-plant species interactions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soil Environmental Conditions and Microbial Build-Up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands

Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities ...

متن کامل

Effects of Topographical Factors on Distribution of Plant Communities in Semi-Steppe Grasslands (Case Study: Ghorkhud Region, Northern Khorasan Province, Iran)

Abstract. The purpose of this study was to investigate the effects of topographical factors on the classification of grassland plant communities in the rangelands of Ghorkhud, Northern Khorasan Province, Iran. For sampling, land units were specified. A floristic list was prepared using minimal area method based on the nested plot (Braun-Blanquet method). 116 10m2 furrows were selected. Within e...

متن کامل

Response of soil microbiota to the addition of 3 , 3 ′ - diaminobenzidine

3,3′-Diaminobenzidine was applied at doses of 5, 10, 25, and 50 mg kg−1 of soil and their effects were evaluated on indigenous soil microbial communities (viable aerobic bacteria, fungal populations, aerobic N2-fixing bacteria, denitrifying, and nitrifying bacteria), and soil enzymatic activities (acid and alkaline phosphatases, arylsulfatase, and dehydrogenase). At doses of 5 or 10 mg kg−1, 3,...

متن کامل

Abundance, Composition and Activity of Ammonia Oxidizer and Denitrifier Communities in Metal Polluted Rice Paddies from South China

While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined chang...

متن کامل

Interactive Effects of Salinity and Cadmium Pollution on Enzyme Activity in a Calcareous Soil Treated With Plant Residues

Abiotic stresses such as salinity and contamination individually have a negative effect on the soil enzyme activities, whereas addition of organic matter to soil can alleviate the negative impacts of stresses on the enzyme activity. However, the combined effects of these stresses (multiple stresses) on soil biochemical conditions and the role of organic matter addition in these interactions are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental microbiology

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2006